银河系

来自中文百科专业版
跳转至: 导航搜索
银河系(示意图)
银河系主体示意图
银河系四个波段的图像,a.可见光图像 b.射电图像 c.红外图像 d.X射线图像

  银河系汉语拼音:Yinhexi;英语:Galaxy),地球太阳所在的巨大恒星系统。拥有约2,000亿颗恒星,因其投影在天球上的乳白亮带——银河而得名。银河系为本星系群中除仙女星系外最大的星系,它的总目视光度约为太阳的150亿倍。按形态分类,银河系是一个Sb或Sc型旋涡星系,中心区有一可能的棒状结构(半径约2,400秒差距,质量约为太阳的100亿倍),记为S(B)bc型。它的第一个主要成分为一旋转的薄盘,称为银盘,直径约为40千秒差距,厚约为300秒差距,质量约为太阳的600亿倍,由较年轻的恒星(星族Ⅰ),银河星团、气体和尘埃组成。高光度星银河星云组成旋涡结构(旋臂)叠加在银盘上。在盘内特别是巨分子云中不断进行着活跃的恒星形成过程。第二个主要成分是一较暗的直径约30千秒差距的球形晕称为银晕,质量约为银盘的15%~30%,由较年老的恒星(星族Ⅱ)组成,其中有百分之几处于球状星团中,还有少量热气体。银晕中央融入一显著的旋转椭球形成分(2.2千秒差距×2.9千秒差距)称为银河系核球,亦由星族Ⅱ的恒星组成。银河系的动力学中心称为银心,可能含有一个约300万倍太阳质量的黑洞。第三种主要成分是一由暗物质构成的晕称为暗晕,半径超过100千秒差距。银河系可见物质的质量为太阳质量的1,400亿倍,其中恒星约占90%,气体和尘埃组成的星际物质约占10%。而暗物质的质量至少为太阳质量的4,000亿倍。银河系整体作较差自转。太阳在银道面以北约8秒差距处,距银心约8.5千秒差距(IAU,1985),以每秒220千米速度绕银心运转,2.4亿年转一周。

  1750年,英国天文学家赖特认为银河系是扁平的。1755年,德国哲学家康德提出了恒星和银河之间可能会组成一个巨大的天体系统;随后的德国数学家郎伯特也提出了类似的假设。到1785年,英国天文学家威廉·赫歇耳绘出了银河系的扁平形体,并认为太阳系位于银河的中心。

  1918年,美国天文学家沙普利经过4年的观测,提出太阳系应该位于银河系的边缘。1926年,瑞典天文学家贝蒂尔·林德布拉德分析出银河系也在自转。

组成

  银河系可见物质约90%集中在恒星内。在赫罗图上,按照光谱型和光度两个参量,分为主序星、超巨星、巨星、亚巨星、亚矮星和白矮星五个分支。1944年,巴德通过仙女星系的观测,判明恒星可划分为星族Ⅰ和星族Ⅱ两种不同的星族。星族Ⅰ是年轻而富金属的天体,分布在旋臂上,与星际物质成协。星族Ⅱ是年老而贫金属的天体,没有向银道面集聚的趋向。1957年,根据金属含量、年龄、空间分布和运动特征,进而将两个星族细分为极端星族Ⅰ(旋臂星族)、较老星族Ⅰ、盘星族、中介星族Ⅱ和极端星族Ⅱ(晕星族)。

  恒星成双、成群和成团是普遍现象。太阳附近25秒差距以内,以单星形式存在的恒星不到总数之半。迄今已观测到球状星团约160个,银河星团1,200多个,还有为数不少的星协。据统计推论,应当有300个球状星团和18,000个银河星团。

  20世纪初,E.E.巴纳德用照相观测,发现了大量的亮星云和暗星云。1904年,恒星光谱中电离钙谱线的发现,揭示出星际物质的存在。随后的分光和偏振研究,证认出星云中的气体和尘埃成分。近年来,通过红外波段的探测发现,在暗星云密集区有正在形成的恒星。射电天文学诞生后,利用中性氢21厘米谱线勾画出银河系旋涡结构。估计出中性氢的质量约为太阳的40亿倍。根据电离氢区(总质量为太阳的8,400万倍)描绘,发现太阳附近有3条旋臂:人马臂、猎户臂和英仙臂。太阳位于猎户臂的内侧。此外,在银心方向还发现了一条3千秒差距臂。旋臂间的距离约1.6千秒差距。1963年,用射电天文方法观测到星际分子OH,这是自从1937~1941年间,在光学波段证认出星际分子CH、CN和CH+以来的重大突破。到2000年底,发现和证认的星际分子已超过120种。这些分子(主要为H2和CO)包含在散布于银盘内的数千个巨分子云中(总质量为太阳的3亿倍)。图2为用不同手段得到的银河系图像。

起源和演化

  银河系的起源这一重大课题现今还了解得很差。这不仅要研究一般星系的起源和演化,还必须研究宇宙学。按大爆炸宇宙学模型,观测到的全部星系都是140亿年前高温高密态原始物质因密度发生起伏,出现引力不稳定和不断膨胀冷却,逐步形成原星系,并演化为包括银河系在内的星系团的。

  1962年,O.J.艾根、D.林登贝尔和A.R. 桑德奇提出,银河系起源于一个巨大的球形气体云,称原银河星云。化学成分与大爆炸后的原始宇宙相同,即氢约占75%,氦约占25%。在时标约2亿年的迅速坍缩过程中,最早诞生的是晕族恒星,因为形成恒星的气体没有金属,所以这些晕星是贫金属的。又因为气体向中心坍缩,所以承袭其速度的晕星绕中心作偏心率较大的椭圆运动,而来不及形成恒星的大部分原始气体在坍缩过程中互相碰撞,轨道变圆并沉降到银盘上,由于混入了大质量晕星演化后抛出的重元素,使得随后形成盘族的恒星金属丰度较高。近年还从恒星的形成和反馈、银核的活动及周围矮星系物质的吸积等角度,更细致地探讨银河系的动力学和化学演化。20世纪60年代由林家翘和徐霞生等发展起来的密度波理论,很好地说明了银河系旋涡结构的整体结构及其长期的维持机制。

银河系的邻居

  银河、仙女座星系和三角座星系是本星系群主要的星系,这个群总共约有50个星系,而本地群又是室女座超星系团的一份子。

  银河被一些本星系群中的矮星系环绕着,其中最大的是直径达21,000光年的大麦哲伦云,最小的是 船底座矮星系、天龙座矮星系和狮子II矮星系,直径都只有500光年。其他环绕着银河系的还有小麦哲伦云,最靠近的是大犬座矮星系,然后是人马座矮椭圆星系、小熊座矮星系、玉夫座矮星系、六分仪座矮星系、天炉座矮星系和狮子I矮星系。

  在2006年1月,研究人员的报告指出,过去发现银河的盘面有不明原因的倾斜,现在已经发现是环绕银河的大小麦哲伦云的扰动所造成的涟漪。是在她们穿过银河系的边缘时,导致某些频率的震动所造成的。这两个星系的质量大约是银河的2%,被认为不足以影响到银河。但是加入暗物质的考量,这两个星系的运动就足以对较大的银河造成影响。在加入暗物质之后的计算结果,对银河的影响增加20倍,这个计算的结果是根据马萨诸塞州大学阿默斯特分校马丁·温伯格的电脑模型完成的。在他的模型中,暗物质的分布从银河的盘面一直分布到已知的所有层面中,结果模型预测当麦哲伦星系通过银河时,重力的冲击会被放大。 

研究简史

  18世纪中叶,人们已意识到除行星、月球等太阳系天体外,满天星斗都是远方的“太阳”。T.赖特、I.康德和J.H.朗伯最先认为,很可能是全部恒星集合成了一个空间上有限的巨大系统。第一个通过观测研究恒星系统本原的是F.W.赫歇耳。他用自己磨制的反射望远镜,计数了若干天区内的恒星。1785年,他根据恒星计数的统计研究,绘制了一幅扁而平、轮廓参差不齐、太阳居其中心的银河系结构图。F.W.赫歇耳死后,其子J.F.赫歇耳继承父业,将恒星计数工作范围扩展到南半天。1837年,W.斯特鲁维测定织女一的三角视差,开始测定恒星的距离,为银河系距离尺度的研究奠定了基础。1887年,O.斯特鲁维首次测定银河系自转,开始了银河系整体运动的研究。1906年,J.C.卡普坦为了重新研究恒星世界的结构,提出了“选择星区”计划,后人称为“卡普坦选区”。他于1922年得出与F.W.赫歇耳的类似的模型,也是一个扁平系统,太阳居中,中心的恒星密集,边缘稀疏。H.沙普利在完全不同的基础上,探讨银河系的大小和形状。他利用1908~1912年H.S.勒维特发现的麦哲伦云中造父变星的周光关系,测定了当时已发现有造父变星的球状星团的距离。假设没有明显星际消光的前提下,于1918年建立了银河系透镜形模型,太阳不在中心。1927年,J.H.奥尔特证实银河系的自转。1930年,R.J.特朗普勒证实存在星际物质。1944年,W.巴德提出星族概念,探讨银河系恒星在物理学和运动学上的总体性质,这对后来银河系形成和演化的研究有重要意义。20世纪50年代,由于射电天文观测手段的应用,证实了银河系旋臂的存在,发现了银河系中心区的复杂结构与爆发现象。60年代,首次探测到银心的红外辐射。80年代,高速晕族恒星的发现以及附近矮星系的运动提示银河系存在暗物质晕。90年代,射电天文学家和红外天文学家合作发现了银心存在大质量黑洞的证据。