微分几何学

来自中文百科专业版
跳转至: 导航搜索

  微分几何学(differential geometry),应用微分学来研究三维欧几里得空间中的曲线曲面等图形性质的数学分支。差不多与微积分学同时起源于17世纪。单变量函数的几何形象是一条曲线,函数的导数就是曲线切线的斜率。函数的积分在几何上则可理解为一曲线下的面积等等。这种把微积分应用于曲线、曲面的研究,实质上就是微分几何学的开端。L.欧拉G.蒙日J.L.拉格朗日以及A.-L.柯西等数学家都曾为微分几何学的发展作出过重要贡献。与此同时,曲面内蕴几何等崭新的思想也在不断地产生并积累着。在此基础上,C.F.高斯奠定了曲面论基础,并使微分几何学成为一门新的数学分支。按F.克莱因变换群几何的分类方法来看,微分几何学应属于运动群,所以也称为运动几何学或初等微分几何学。

  微分几何学的研究对数学其他分支以及力学物理学工程学等的影响是不可估量的。如:伪球面上的几何与非欧几何有密切关系;测地线和力学、变分学、拓扑学等有着深刻的联系,是内容丰富的研究课题。这方面有以J.阿达马H.庞加莱等人为首的优异研究。极小曲面是和复变函数论变分学拓扑学关系极为深刻的研究领域,K.魏尔斯特拉斯J.道格拉斯等人作出过卓越贡献。

  微分几何学的研究工具大部分是微积分学。力学、物理学、天文学以及技术和工业的日益增长的要求则是微分几何学发展的重要因素。尽管微分几何学主要研究三维欧几里得空间中的曲线、曲面的局部性质,但它形成了现代微分几何学的基础则是毋庸置疑的。因为依赖于图形的直观性及由它进行类推的方法,即使在今天也未失其重要性。